Sorry if this is the wrong forum for this or if it has already been posted, but I thought it might be relevant to this community:
http://news.sciencem...-wa.html?ref=hp
Excerpt: "They collected 330 C. chacoense plants from across a 300-kilometer-long area, which ranges from desert-like conditions in the northeast to very moist conditions in the southwest. The researchers found that only about 15% to 20% of the chili peppers produced in the dry conditions are hot, compared with 100% of the peppers from plants living in wet conditions."
Abstract of the actual paper (http://rspb.royalsocietypublishing.org/content/early/2011/12/15/rspb.2011.2091)
"Evolutionary biologists increasingly recognize that evolution can be constrained by trade-offs, yet our understanding of how and when such constraints are manifested and whether they restrict adaptive divergence in populations remains limited. Here, we show that spatial heterogeneity in moisture maintains a polymorphism for pungency (heat) among natural populations of wild chilies (Capsicum chacoense) because traits influencing water-use efficiency are functionally integrated with traits controlling pungency (the production of capsaicinoids). Pungent and non-pungent chilies occur along a cline in moisture that spans their native range in Bolivia, and the proportion of pungent plants in populations increases with greater moisture availability. In high moisture environments, pungency is beneficial because capsaicinoids protect the fruit from pathogenic fungi, and is not costly because pungent and non-pungent chilies grown in well-watered conditions produce equal numbers of seeds. In low moisture environments, pungency is less beneficial as the risk of fungal infection is lower, and carries a significant cost because, under drought stress, seed production in pungent chilies is reduced by 50 per cent relative to non-pungent plants grown in identical conditions. This large difference in seed production under water-stressed (WS) conditions explains the existence of populations dominated by non-pungent plants, and appears to result from a genetic correlation between pungency and stomatal density: non-pungent plants, segregating from intra-population crosses, exhibit significantly lower stomatal density (p = 0.003), thereby reducing gas exchange under WS conditions. These results demonstrate the importance of trait integration in constraining adaptive divergence among populations."
May be common knowledge, but it's nice to get some science out there.
http://news.sciencem...-wa.html?ref=hp
Excerpt: "They collected 330 C. chacoense plants from across a 300-kilometer-long area, which ranges from desert-like conditions in the northeast to very moist conditions in the southwest. The researchers found that only about 15% to 20% of the chili peppers produced in the dry conditions are hot, compared with 100% of the peppers from plants living in wet conditions."
Abstract of the actual paper (http://rspb.royalsocietypublishing.org/content/early/2011/12/15/rspb.2011.2091)
"Evolutionary biologists increasingly recognize that evolution can be constrained by trade-offs, yet our understanding of how and when such constraints are manifested and whether they restrict adaptive divergence in populations remains limited. Here, we show that spatial heterogeneity in moisture maintains a polymorphism for pungency (heat) among natural populations of wild chilies (Capsicum chacoense) because traits influencing water-use efficiency are functionally integrated with traits controlling pungency (the production of capsaicinoids). Pungent and non-pungent chilies occur along a cline in moisture that spans their native range in Bolivia, and the proportion of pungent plants in populations increases with greater moisture availability. In high moisture environments, pungency is beneficial because capsaicinoids protect the fruit from pathogenic fungi, and is not costly because pungent and non-pungent chilies grown in well-watered conditions produce equal numbers of seeds. In low moisture environments, pungency is less beneficial as the risk of fungal infection is lower, and carries a significant cost because, under drought stress, seed production in pungent chilies is reduced by 50 per cent relative to non-pungent plants grown in identical conditions. This large difference in seed production under water-stressed (WS) conditions explains the existence of populations dominated by non-pungent plants, and appears to result from a genetic correlation between pungency and stomatal density: non-pungent plants, segregating from intra-population crosses, exhibit significantly lower stomatal density (p = 0.003), thereby reducing gas exchange under WS conditions. These results demonstrate the importance of trait integration in constraining adaptive divergence among populations."
May be common knowledge, but it's nice to get some science out there.